
Query Processing in Containers
Hosting Virtual Peer-to-Peer Nodes

Wolfgang Hoschek
CERN IT Division

European Organization for Nuclear Research
1211 Geneva 23, Switzerland

wolfgang.hoschek@cern.ch

ABSTRACT
In a Peer-to-Peer (P2P) network, a link topology such as
a ring, tree or graph describes the link structure among
autonomous nodes. A node deployment model defines
where and how one or more partitions of the link topol-
ogy are physically running, stored and accessed. Link
topology and node deployment are distinct and orthogo-
nal concepts, and hence a node deployment model need
not correspond to a link topology at all. The sim-
plest (and most common) deployment model has distinct
nodes running on distinct hosts.

In this paper, we propose that nodes can also be
concentrated in node containers, which are transparent
software hosting environments that embed one or more
virtual nodes. Node deployment models range from cen-
tralized to fully distributed. Virtual hosting has the po-
tential for increased query performance (as opposed to
increased scalability). Thus, we introduce the separate
P2P query scope parameters logical radius and physical
radius, as well as three novel query execution strategies
that transparently exploit the properties of virtual host-
ing. The key idea is to reduce or eliminate the need
for messaging between container-internal nodes and to
run as few as possible queries against the database of
shared nodes. Under normal query execution and under
collecting traversal, a query to a container node can be
efficiently answered without violating the semantics of
query and scope. Under the quick scope violating query
strategy, a query can be answered even more efficiently,
by relaxing the conditions imposed by the query scope.

KEY WORDS
Peer-to-Peer Network, Virtual Hosting, Query Process-
ing

1. Introduction

In a large distributed system such as a Peer-to-Peer (P2P)
file sharing system [1, 2] or a Grid [3], it is desirable
to maintain and query dynamic and timely information
about active participants such as services, resources and
user communities. Other examples are a (worldwide)
service discovery infrastructure for a multi-national orga-
nization, the Domain Name System (DNS), the email in-
frastructure, a monitoring infrastructure for a large-scale
cluster of clusters, or an instant messaging and news
service. For example, the European DataGrid (EDG)

[4, 5] is a global software infrastructure that ties together
a massive set of globally distributed organizations and
computing resources for data-intensive physics analysis
applications, including thousands of network services,
tens of thousands of CPUs, WAN Gigabit networking as
well as Petabytes of disk and tape storage [6].

An enabling step towards increased Internet and
Grid software execution flexibility is the web services vi-
sion [7, 8, 9] of distributed computing where programs
are no longer configured with static information. Rather,
the promise is that programs are made more flexible and
powerful by querying Internet databases (registries) at
runtime in order to discover information and network at-
tached third-party building blocks. Services can adver-
tise themselves and related metadata via such databases,
enabling the assembly of distributed higher-level compo-
nents.

In support of this vision we have introduced the
Web Service Discovery Architecture (WSDA) [10] and
given motivation and justification [11] for the assertion
that realistic ubiquitous service and resource discovery
requires a rich general-purpose query language such as
XQuery [12] or SQL [13]. Based on WSDA, we in-
troduced the hyper registry [14], which is a centralized
database (node) for discovery of dynamic distributed
content.

However, in an Internet discovery database system,
the set of information tuples in the universe is parti-
tioned over one or more distributed nodes (peers), for
reasons including autonomy, scalability, availability, per-
formance and security. It is not obvious how to enable
powerful discovery query support and collective collabo-
rative functionality that operate on the distributed system
as a whole, rather than on a given part of it. Further, it is
not obvious how to allow for search results that are fresh,
allowing time-sensitive dynamic content.

It appears that a Peer-to-Peer (P2P) database net-
work may be well suited to support dynamic distributed
database search, for example for service discovery. The
overall P2P idea is as follows. Rather than have a cen-
tralized database, a distributed framework is used where
there exist one or more autonomous database nodes, each
maintaining its own data. Queries are no longer posed to
a central database; instead, they are recursively propa-
gated over the network to some or all database nodes,
and results are collected and send back to the client.

Consequently, we devised the WSDA based Uni-
fied Peer-to-Peer Database Framework (UPDF) [15] and



its associated Peer Database Protocol (PDP) [16], which
are unified in the sense that they allow to express specific
applications for a wide range of data types (typed or un-
typed XML, any MIME type [17]), node topologies (e.g.
ring, tree, graph), query languages (e.g. XQuery, SQL),
query response modes (e.g. Routed, Direct and Referral
Response) and pipelining characteristics. In the UPDF
framework, an originator sends a query to an agent node,
which evaluates it, and forwards it to select neighbor
nodes.

In a Peer-to-Peer (P2P) network, a link topology
such as a ring, tree or graph describes the link structure
among autonomous nodes. For example, in a worldwide
service discovery system, a link topology can tie together
a distributed set of administrative domains, each hosting
a registry node holding descriptions of services local to
the domain. Figure 1 depicts some example topologies,
covering the spectrum from centralized models to fine-
grained fully distributed models.

Figure 1. Example Link Topologies [18].

A node deployment model defines where and how
one or more partitions of the link topology are physi-
cally running, stored and accessed. Link topology and
node deployment are distinct and orthogonal concepts,
and hence a node deployment model need not correspond
to a link topology at all. The simplest (and most com-
mon) deployment model has distinct nodes running on
distinct hosts.

In this paper, we propose that nodes can also be
concentrated in node containers, which are transparent
software hosting environments that embed one or more
virtual nodes. Node deployment models range from cen-
tralized to fully distributed. Virtual hosting has the po-
tential to increased the query performance (as opposed
to increased scalability). Thus, we introduce the sepa-
rate P2P query scope parameters logical radius and phys-
ical radius, as well as three novel query execution strate-
gies that transparently exploit the properties of virtual
hosting. The key idea is to reduce or remove the need
for messaging between container-internal nodes and to
run as few as possible queries against the database of
shared nodes. Under normal query execution and under
collecting traversal, a query to a container node can be
efficiently answered without violating the semantics of
query and scope. Under the quick scope violating query
strategy, a query can be answered even more efficiently,
by relaxing the conditions imposed by the query scope.

The remainder of this paper is organized as follows.
Section 2. motivates and describes the use of containers
for virtual node hosting. Section 3. discusses in detail
the three query execution strategies. Finally, Section 4.
summarizes and concludes this paper.

2. Containers for Virtual Node Hosting

A node link topology can be deliberately arranged and
exploited by applications. For example, in an attempt to
explicitly exploit topology characteristics, a virtual orga-
nization of a Grid may deliberately organize global, in-
termediate and local job schedulers into a tree-like topol-
ogy. Correct and efficient operation of scheduling may
involve queries with a neighbor selection policy that se-
lects all child nodes and ignores all parent nodes. For the
scheduling query, it is irrelevant where the nodes are run-
ning, and where and how nodes (tuples, service descrip-
tions) are stored. What matters is that the query traverses
a tree.

A link topology is purely a logical construct. It
does not describe where and how this link information
is stored and accessed. This is defined by a node deploy-
ment model, which defines where and how one or more
partitions of the graph are running, stored and accessed.

We argue that link topology and node deployment
are distinct and orthogonal concepts, and hence a node
deployment model need not correspond to a link topol-
ogy at all. Consider the analogy to the WWW: The
WWW is a graph of HTML pages. Vertices are estab-
lished through embedded HTML hyperlinks. The graph
topology is, by definition, insensitive to how and where
HTML pages are physically stored and served (on which
hosts, URL paths, and web server technologies). The
topology remains identical, no matter whether all pages
of the universe are served by a single large dynamic web
server or any kind of worldwide federation of static web
servers.

The simplest (and most common) deployment
model has distinct nodes running on distinct hosts. How-
ever, we propose that nodes can also be concentrated in
central places called node containers. A node container
is a transparent software hosting environment that em-
beds one or more nodes, as depicted in Figure 2. The
set of all nodes in the universe is partitioned over one
or more node containers. A container can be a special-
purpose program that behaves as if it were a network
of nodes (virtual hosting). A well-known example for
virtual hosting is web serving. A web server can serve
millions of static or dynamic pages from an essentially
infinitely large name space of URLs (nodes). To the out-
side world, the server is invisible, and each URL (node)
can be seen as a separate service (having a name or ad-
dress, HTTP network protocol, TLS security, etc). Of
course, internally just one or a few processes are used
to implement such virtual hosting. A general-purpose
container, on the other hand, can run each node (or each
request to a node) in an independent process or thread
(physical hosting). For example, virtual and physical
hosting is used in Java servlet [19] and Enterprise Java
Beans technology [20].



B(2)

D(4)C(3)

E(5)

F(6)

H(8)

I(9)

A(1)

G(7)

Container

Internal(B)={C,D,B,E}
External(B)={A,F}

Internal={B,C,D,E,G,H}
External={A,F,I}

Figure 2. Node Containers.

In any case, the container is invisible to the outside
world. Hosted nodes still appear and behave like any
other node. In our case, this means that a hosted node
has a service link and description, and it supports publi-
cation, queries, etc. via the operations and network pro-
tocols advertised by the service description. The funda-
mental difference to classic database architectures is that
in the latter there exists no deployment transparency. As
an extreme example of virtual hosting, one could imag-
ine a hypothetical relational database system that exposes
each individual tuple as a network service, supporting di-
rect network connections to the tuple to answer queries
against its column values. Conceptually, we can say that
every node runs within a container, even if the container
holds only a single node. A remote client may ask for the
dynamic creation of a virtual or physical node by means
of a node factory interface. Now we are in the position
to define a node deployment model as being a description
of the set of containers physically implementing a given
link topology.

Several node deployment models can be envisaged,
ranging from coarse to fine grained, as well as arbitrary
mixtures. For example, in a centralized deployment sce-
nario, the entire global graph of, say

�����
, nodes may be

accessible through a single container, with all nodes (ser-
vice interfaces) being handled by a single process on a
single host. In a slightly less central scenario, the same
graph may be partitioned among ten organizations, each
with a central container as described above. On the fully
distributed end of the spectrum, each node may run on
a distinct box, storing its own tuples (including neighbor
descriptions) in a local registry. In all but the first case,
there neither exists a single grand monolithic database
nor a single owner and provider of information.

There are two primary motivations why concentrat-
ing nodes may be useful. First, for reasons including cen-
tral control, reliability, continuous availability, maintain-
ability, security, accounting and firewall restrictions on
incoming connections for hosts. These reasons are im-
portant, but we do not delve into them any further. Sim-
ilarly, we do not consider physical hosting any further.
Instead, we focus on the second motivation, which is the
potential of virtual hosting for increased performance (as

opposed to increased scalability).
In any kind of P2P network, a node has a database

or some kind of data source against which queries are
applied. In a P2P network for service discovery, this
database happens to be the publication database. Dis-
cussion in this section is applicable to any kind of P2P
network, while the examples illustrate service discovery.

If many container nodes reside on the same host, in
the same process and store their tuples (e.g. node service
descriptions, Gnutella file indexes) in the same database,
query support is potentially much more efficient. The
query engine can run on “big iron”. The database may fit
in its entirety in a main memory buffer. Network commu-
nication between remote nodes can be replaced with lo-
cal loop-back connections, inter-process communication
or even direct function calls. To compute the full query
result set for all container nodes, it may perhaps be suffi-
cient to execute just one or a few batch queries against the
shared database, instead of many small queries against
separate databases. Intuitively it seems that the smaller
nodes are, the more performance can be gained through
virtual hosting. For example, consider a network with
millions of small registry nodes spread all over the world,
each holding just some ten tuples. Perhaps searching
would be much more efficient if the nodes and their
databases were just partitioned across a few, say a hun-
dred, powerful node containers.

Consider the three example containers depicted in
Figure 2. The central container has six internal nodes
(B,C,D,E,G,H) and three external nodes (A,F,I).
External nodes belong to other containers. Internal links
connect nodes within the container. External links con-
nect internal with external nodes. A hop is said to be
logical if it travels along an internal or external link. A
hop is said to be physical if it travels along an external
link. Intuitively it is clear that traversing an internal link
is much cheaper than traversing an external link. Ac-
cordingly we propose to distinguish the separate scope
parameters logical radius and physical radius. For ex-
ample, a user can specify that a query should reach very
far, say a logical radius of 100 hops. To ensure that this
query does not burden all nodes in the universe, the user
can specify that it should touch at most three containers
on any given path (physical radius).

3. Container Query Processing

In this section, we propose three query execution strate-
gies. A query to a node of a container can be efficiently
answered without violating the semantics of query and
scope (normal query execution, collecting traversal).
Even more efficiently, it can be answered by relaxing the
conditions imposed by the query scope (quick scope vi-
olating query). Let us look at these three strategies in
more detail.

Normal Query Execution. Clearly a container can
answer a query like any normal node via the execution
plans proposed in our prior studies [15]. Recall the tem-
plate execution plan, as depicted in Figure 3, and the



L ... Local Query
M ... Merge Query

Q ... User Query

N ... Neighbor Query

SEND

M

U

L ... RECEIVEk

N

RECEIVE1

N

A

U ... Unionizer Operator

A ... Agent Plan

Figure 3. Template Execution Plan [15].

specific plans for queries that are either recursively par-
titionable or not. As an optimization, network communi-
cation between internal nodes can be replaced with local
loop-back connections, inter-process communication or
direct function calls. For example, our Peer Database
Protocol [16] is built upon the BEEP application-level
network protocol framework [21, 22]. Since BEEP can
be mapped to several underlying reliable transport lay-
ers (TCP is merely the default), a container can plug in
an in-process transport mapping, yet continue to use the
same messaging code base.

Collecting Traversal. To answer queries, a container
can use a strategy we propose to call collecting traversal.
Here the goal is to remove the need for any internal mes-
saging and to run as few as possible queries against the
database of shared nodes. To ensure that query seman-
tics are fully preserved, the fact is exploited that queries
in our query model are defined over a single virtual set
of tuples (service descriptions). The query model allows
generating this set of tuples in any arbitrary way.

The strategy works as follows. When a container
node receives an external query, it takes over the work
for the other internal nodes. In the first phase, it col-
lects preparatory data. In the second phase, the query
is executed. The first phase collects the internal and ex-
ternal nodes that are reachable from the start node. In
other words, one traverses the container from the given
start node, following the path that the query would touch.
Along the way, the (keys of) internal nodes and external
nodes are collected.

Consider the example from Figure 2. The
keys of the six internal nodes are (2,3,4,
5,7,8) whereas the keys of the three external
nodes are (1,6,9). The originator sends a query
to the start node B. The node has a database of
tuples(B)= � 1,3,4 � . The internal nodes reachable
from B are internal(B)= � 3,4,2,5 � , and the
reachable external nodes are external(B)= � 1,6 � .
The tuples contained in the internally reachable
nodes are tuples(internal(B)) = UNION
(tuples(3), tuples(4), tuples(2),
tuples(5)) = � 1, 2,3,4,5,6 � .

According to query type, the node chooses an exe-
cution plan, and executes it. However, the local query L
is executed against the tuples of the internally reachable
nodes tuples(internal(B)) rather than against

the tuples of the database tuples(B). Similarly, the
plan forwards the query to the nodes external(B)
rather than to the neighbors obtained from B’s neighbor
selection. Scope semantics are preserved by explicitly
applying the relevant rules of scope parameters during
node traversal (e.g. radius pruning and neighbor selec-
tion).

The net effect is that the local query L and the
merge query M are batched. That is, they are applied once
over a large set, instead of many times over a small set.
The nodes of a container are stored in a single database
(table), for example as depicted in Table 1. The table
is not normalized for clarity of exposition. Collecting
nodes is particularly fast if the neighbor selection policy
is simple and the database fits into main-memory. For
example, it is certainly possible to have a data structure
that allows quickly traversing the database table. Further,
internal messaging overhead is eliminated altogether. To
summarize, if the neighbor selection policy is applied at
each node, and scope parameters such as radius are ob-
served, one can emulate normal query execution, but in a
way that is more efficient.

Node ID Service Is external? Tuples
1 A True null
2 B False 3, 4
3 C False 2, 5
4 D False 2, 5
5 E False 3, 4, 6
6 F True null

Table 1. Node Table of Container.

Note that the radius is not defined to be the num-
ber of hops a query is allowed to travel on any given
path. Rather, it is more weakly defined to be the maxi-
mum number of hops a query is allowed to travel on any
given path. In other words, it is not guaranteed that a
query takes the shortest path from the agent to any given
node, thereby covering a total maximum of nodes. There
are two reasons for this kind of definition. First, a node
may choose to decrease the radius by any value it sees
fit in order to reduce resource consumption or to prevent
system exploitation. Second, loop detection and unpre-
dictable timing in distributed systems can lead to a phe-
nomenon we propose to call greedy radius pruning. Re-
call that the very same query may arrive at a node mul-
tiple times, along distinct routes, perhaps in a complex
pattern. Traveling N hops decreases the radius of a query
by N. If the query first arrives via a route with many (fast)
hops, and later arrives again via a route with few (slow
hops), the second arrival will be detected as a loop and re-
jected. However, the successfully forwarded (first) query
continues to travel less hops than theoretically possible
considering the (larger) radius of the second query. If
the second query had arrived first, the query would have
been able to travel further and potentially collect more
matching results. Propagating a query to all neighbors
concurrently may somewhat increase query coverage, in
particular in homogenous LANs.

Traversal of internal nodes via depth-first search is



inappropriate because it leads to greedy radius pruning
with high probability, in particular if a container holds a
large number of nodes with a complex internal topology.
In practice, this means that even though a user may have
specified a theoretically large enough logical radius, it is
unlikely that an incoming query will ever forward beyond
the current container. It is in the nature of depth-first
search that it is unlikely that an external link is reached
along a short internal route. Rather, it is likely that it is
reached along one of the longest possible internal routes.
Within a container, greedy pruning can be eliminated by
traversal using breadth-first search. This ensures that the
shortest path to external links is always found, despite
loop detection pruning. Put another way, loop detection
is conditioned to prune only paths longer than the short-
est path. The net effect is that external nodes receive a
meaningful logical radius scope parameter on query for-
ward. The pseudo-code in Figure 4 computes the internal
and external nodes of a given entry node, using breadth-
first search.

FUNCTION collectingTraversal(startNode, logRadius) {

internal = {}, external = {}
done = {}, todo = {startNode}
while (size=size(todo)) > 0 and logRadius >= 0

logRadius = logRadius - 1
for i := 1 to size
node = first element of todo
remove first element from todo
done = done UNION {node}
internal = internal UNION tuples(node)
if logRadius >= 0 then

for each neighbor n IN select(neighbors(node))
if n is internal && not contained in todo &&

not contained in done
then Append n to todo

endif
if n is external &&

not (n,any radius) contained in external
then external=external UNION

{(n, logRadius)}
endif

endfor
endif

endfor
endwhile
Return (internal, external)
}

Figure 4. Collecting Traversal.

Quick Scope Violating Query. Normal query exe-
cution and collecting traversal preserve query and scope
semantics. If no query scope is given, or if it is acceptable
to ignore or alter scope semantics, query execution can be
optimized further using the strong technologies of cen-
tralized (relational) database architectures. For example,
internal graph traversal can be eliminated altogether. The
strategy works as follows. According to query type, the
node chooses an execution plan, and executes it. How-
ever, the local query L is executed against the union of
all tuples of the container (1-9) rather than against B’s
database tuples(B). Similarly, the plan forwards the

query to the external nodes selected from the union of all
external nodes of the container (1,6,9) rather than to
the immediate neighbors of B.

The net effect is that the local query L and the
merge query M are batched. That is, they are applied
once over a large set, instead of many times over a small
set. The same holds for neighbor selection. Determin-
ing all tuples of the container requires no time at all be-
cause they are, of course, stored in the same database
(table). Computing all external nodes is cheap as well.
Scope-violating queries are answered using the strong
technologies of centralized (relational) database archi-
tectures. Consequently, they are highly efficient, at the
expense of ignoring or altering scope semantics.

For example, nodes (7,8,9) should never be con-
sidered, as they are not directly or indirectly connected to
B. Further, it is unclear what logical radius should be as-
signed on query forward to external nodes. Computing
the correct logical radius would essentially degrade per-
formance down to the performance of collecting traver-
sal. It appears that the least bad choice is to decrease
the logical radius by one on external forward. Note that
query semantics are still preserved. The query is just
fed a larger than necessary set of tuples (service descrip-
tions). In practice, this may be tolerable for a significant
fraction of use cases.

4. Conclusions

Link topology and node deployment are distinct and or-
thogonal concepts, and hence a node deployment model
need not correspond to a link topology at all. The sim-
plest (and most common) deployment model has distinct
nodes running on distinct hosts. A node container is
a transparent software-hosting environment that embeds
one or more nodes. The set of all nodes in the uni-
verse is partitioned over one or more node containers.
A container can be a special-purpose program that be-
haves as if it were a network of nodes (virtual hosting).
A well-known example for virtual hosting is web serv-
ing. Hosted nodes still appear and behave like any other
node. In our case, this means that a hosted node has a
service link and description, and it supports publication,
queries, etc. via the operations and network protocols
advertised by the service description. Node deployment
models range from centralized to fully distributed. Vir-
tual hosting has the potential for increased performance
(as opposed to increased scalability). For example, con-
sider a network with millions of small registry nodes
spread all over the world, each holding just some ten tu-
ples. Perhaps searching would be much more efficient if
the nodes and their databases were just partitioned across
a few, say a hundred, powerful node containers.

Internal links connect nodes within a container. Ex-
ternal links connect internal with external nodes. The
separate scope parameters logical radius and physical
radius are distinguished. A query to a container node
can be efficiently answered without violating the seman-
tics of query and scope (normal query execution, collect-
ing traversal). Even more efficiently, it can be answered
by relaxing the conditions imposed by the query scope



(quick scope violating query).
The goal of collecting traversal is to remove the

need for any internal messaging and to run as few as pos-
sible queries against the database of shared nodes. To en-
sure that query semantics are fully preserved, the fact is
exploited that queries in our query model are defined over
a single virtual set of tuples. The query model allows
generating this set of tuples in any arbitrary way. The
first phase collects the internal and external nodes that
are reachable from the start node. The local query is exe-
cuted against the tuples of the internally reachable nodes.
The query is forwarded to the reachable external nodes.
Scope semantics are preserved by explicitly applying the
relevant rules of scope parameters during node traversal.
Traversal of internal nodes via depth-first search is inap-
propriate because it leads to greedy radius pruning with
high probability. Breadth-first search should be used in-
stead.

If no query scope is given, or if it is acceptable to
ignore or alter scope semantics, a query can be answered
with the quick scope violating query strategy, using the
strong technologies of centralized (relational) database
architectures. Internal graph traversal is eliminated al-
together. The local query, the merge query and neigh-
bor selection are applied once over a large set, instead of
many times over a small set.

References
[1] Gnutella Community. Gnutella Protocol Specification v0.4.

dss.clip2.com/GnutellaProtocol04.pdf.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. In
Workshop on Design Issues in Anonymity and Unobservability,
2000.

[3] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Int’l. Journal
of Supercomputer Applications, 15(3), 2001.

[4] Ben Segal. Grid Computing: The European Data Grid Project. In
IEEE Nuclear Science Symposium and Medical Imaging Confer-
ence, Lyon, France, October 2000.

[5] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz
Stockinger, and Kurt Stockinger. Data Management in an Inter-
national Data Grid Project. In 1st IEEE/ACM Int’l. Workshop on
Grid Computing (Grid’2000), Bangalore, India, December 2000.

[6] Large Hadron Collider Committee. Report of the LHC
Computing Review. Technical report, CERN/LHCC/2001-
004, April 2001. http://cern.ch/lhc-computing-review-
public/Public/Report final.PDF.

[7] Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework
for XQueries over Dynamic Distributed Content and its Applica-
tion for Scalable Service Discovery. PhD Thesis, Technical Uni-
versity of Vienna, March 2002.

[8] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke.
The Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration, January 2002.
http://www.globus.org.

[9] P. Cauldwell, R. Chawla, Vivek Chopra, Gary Damschen, Chris
Dix, Tony Hong, Francis Norton, Uche Ogbuji, Glenn Olander,
Mark A. Richman, Kristy Saunders, and Zoran Zaev. Profes-
sional XML Web Services. Wrox Press, 2001.

[10] Wolfgang Hoschek. The Web Service Discovery Architecture.
In Proc. of the Int’l. IEEE/ACM Supercomputing Conference (SC
2002), Baltimore, USA, November 2002. IEEE Computer Soci-
ety Press.

[11] Wolfgang Hoschek. A Data Model and Query Language for Ser-
vice Discovery. Technical report, DataGrid-02-TED-0409, April
2002.

[12] World Wide Web Consortium. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, December 2001.

[13] International Organization for Standardization (ISO). Infor-
mation Technology-Database Language SQL. Standard No.
ISO/IEC 9075:1999, 1999.

[14] Wolfgang Hoschek. A Database for Dynamic Distributed Content
and its Application for Service and Resource Discovery. In Int’l.
IEEE Symposium on Parallel and Distributed Computing (ISPDC
2002), Iasi, Romania, July 2002.

[15] Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework
for Scalable Service and Resource Discovery. In Proc. of the
3rd Int’l. IEEE/ACM Workshop on Grid Computing (Grid’2002),
Baltimore, USA, November 2002. Springer Verlag.

[16] Wolfgang Hoschek. A Unified Peer-to-Peer Database Protocol.
Technical report, DataGrid-02-TED-0407, April 2002.

[17] N. Freed and N. Borenstein. Multipurpose Internet Mail Ex-
tensions (MIME) Part One: Format of Internet Message Bodies.
IETF RFC 2045, November 1996.

[18] Nelson Minar. Peer-to-Peer is Not Always Decentralized. In The
O’Reilly Peer-to-Peer and Web Services Conference, Washington,
D.C., November 2001.

[19] Java Community Process. Java Servlet 2.3 Specification.
jcp.org/aboutJava/communityprocess/final/jsr053.

[20] Java Community Process. Enterprise Java Beans Specification.
java.sun.com/products/ejb/docs.html.

[21] Marshall Rose. The Blocks Extensible Exchange Protocol Core.
IETF RFC 3080, March 2001.

[22] Marshall Rose. Mapping the BEEP Core onto TCP. IETF RFC
3081, March 2001.


